Experiment_5 Large scale I

– Preparation

– Execution

– Evaluation


Digital origami

Brilliant website about digital origami:

Changing scale

– Up until now, I’ve been mostly working with the single module of the structure

– Zooming out, looking at the overall crease pattern of the structure


Origami is made up by a flexible surface with rigid geometry.

By studying different origami-patterns and distorted surfaces I hope to gain a better understanding of the concept of having a flexible surface.

I also really like the idea of the light, delicate origami pattern being interpreted in a concrete (which possess almost the opposite characteristics)

Experiment_4 Semiflexible surface

A combination of a hard and flexible surface
Taking back control of the deformation I decided to try making a semi-flexible surface from a double-layered plastic sheet with cuts allowing the surface to deform. With this formwork I kept the same front and back panels, and then changed the sides to change the form. I made 3 casts creating different elements but reusing the formwork.

Thus working in a rather small scale (30 x 20 cm) I discovered a greater need to control the deformation. In this experiment it is the obvious solution to use bolts to control the deformation. By either tightening the bolts (in this scale I used screws). In my first cast I only used 4 screws to hold the cast together. My later one I decided to add more screws to fully be able to control the deformation.

Using the bolts to control the deformation could be an ideal way to introduce the parametric and digital side of the design. By digitally controlling the deformation, you could produce an overall design made up by minor deformations in the individual elements.

I believe this experiment has some interesting potential. The formwork could be used as an in-situ system, or be produced as prefabricated elements. This experiment has opened up for more questions and further investigations.

– What is the scale of these elements?
– How does the scale of the elements affect the possibilities of the design?
– How can you control the deformation of a surface flexible?
– How can the elements/formwork be joined?
– Is it possible to adapt the interlocking formwork to a flexible surface?
– How many cuts and where should they be?
– What other materials would be suitable as formwork when working in a larger scale?
– How many casts can be done in the same formwork?

Experiment_4 Excecution


Experiment_2 and 3 Evaluation

Vertical vs. horizontal fabric casting

In both experiments we used a rigid frame formwork to hold the membrane in place. The fabric membranes were manipulated in various ways to test the material. These experiments where executed to gain a better understanding of how fabric acts as a formwork when used in a vertical or horizontal cast.

We discovered that it was very challenging to control the deformation. Especially in the vertical cast you really had to take gravity into consideration. When working with such a stretchy material it is important that you work with gravity as a design factor. This made it very had to make any accurate predictions how the final elements would be shaped.

Our trouble with controlling the deformation would probably have been less significant if we had used a more firm fabric or a thicker material (like a rubber).

On the positive side the elements had a beautiful surface structure resembling the surface of the fabric. Some of the casts had even been slightly dyed from the fabric.